J. Am. Chem.

Catalytic Asymmetric Allylic Alkylation in Water
with a Recyclable Amphiphilic Resin-Supported
P,N-Chelating Palladium Complex

Yasuhiro Uozumi* and Kazutaka Shibatdmi

Institute for Molecular Science (IMS), Nishi-Gonaka 38
Myodaiji, Okazaki 444-8585, Japan
Faculty of Pharmaceutical Sciences, Nagoya City dénsity
Mizuho-ku, Nagoya 467-8603, Japan

Receied December 9, 2000

Highly enantioselective reactions in water with recyclable

immobilized chiral catalysts are an important goal in synthetic

organic chemistry:2 We recently reported that several palladium-
catalyzed reactiorfsincluding-allylic substitution?dcarbonyla-
tion 3 the Heck reactiofiS and Suzuki-Miyaura cross-coupling?
took place in watérby use of palladiumphosphine complexes
bound to an amphiphilic polystyreag@oly(ethylene glycol) graft
copolymer (PS-PEG) reskiThese encouraging results prompted

us to design new chiral complexes supported on the amphiphilic

PS-PEG resin, which would exhibit catalytic activity as well as

enantioselectivity in water in several types of transition metal-

catalyzed asymmetric organic transformatiérid/e describe
herein the design and preparation of a neyix-chelate chiral

ligand bound to PS-PEG resin and its use for palladium-catalyzed

asymmetric allylic substitution in water, in which enantioselec-
tivity up to 99/1 was achieved.

During our studies on the design of new chiral reagéhtghly
functionalized optically active bicyclic amines having a pyrrolo-
[1,2climidazolone framework were identified as effective chiral

agents through a diversity-based approach to new chiral amine

catalysts’ The results indicated that a novie|N-chelate chiral
ligand having the pyrrolo[1,2}limidazolone skeleton as a basic
chiral unit would be readily immobilized on the PS-PEG resin to

achieve highly enantioselective heterogeneous catalysis in Water

(Scheme 1). (R,9a9-(2-Aryl-3-(2-diphenylphosphino)phenyl)-
tetrahydro-H-imidazo[1,5a]indole-1-one 1), which was readily
prepared from $-indoline-2-carboxylic acid, 43-(methoxy-
carbonyl)propylaniline, and 2-(diphenylphosphino)benzaldehyde
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by a sequence of reactions shown in Scheme 1, was immobilized
on PS-PEG-NHresirf to give the PS-PEG resin-supported chiral
P,N-chelate ligandR,9-2 (Scheme 1}° Formation of a palladium
complex of theP,N-chelate ligand was performed by mixing
[PACI(3-CsHs)], in toluene at room temperature for 10 min to
give the PS-PEG supporté&IN-chelate compleX-Pd in quan-
titative yield. Following the same procedure, PS-PEG resin-
supported complexe3-Pd and4-Pd were also prepared.

To explore the enantiocontrolling potential of the resin-
supported complexes in watérye elected to study palladium-
catalyzed asymmetric allylic substitution of cyclic substrates,
which is still a major challenge even with homogeneous chiral
catalysts? We were very pleased to find that high stereoselectivity
was achieved in water when the PS-PEG resin-supported catalyst
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dialkyl malonate (Scheme 2). Thus, the reaction of methyl
cyclopentenyl carbonates) and dimethyl malonate8g) was
catalyzed by2-Pd in aqueous lithium carbonate at 4G to give
68% isolated yield of the allylic alkylated adduc$){9a with
enantiomeric excess of 92% (Table 1, entry*31JThe reactions
with diethyl malonate&b) in place of8a afforded approximately
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Table 1. Catalytic Asymmetric Alkylation of Allylic Esters in
Water by Use of PS-PEG Resin-Supported Pd Compiexes

allylic  nucleo- yield % e€

entry ester phile catalyst product (%)° (config)y
1 5 8a 2-Pd 9a 68 929
2 5 8b 2-Pd 9b 67 920
3 6 8a 2-Pd 10a 71 890
4 6 8b 2-Pd 10b 78 890
5¢ 6 8b 2-Pd 10b 60 910
6 7 8a 2-Pd 11a 84 970
7 7 8b 2-Pd 11b 94 98 O
8 12 8a 2-Pd 13a 71 200
9 12 8b 2-Pd 13b 80 90
10 12 8b 3-Pd 13b 55 230
11 12 8b 4-Pd 13b 44 320
12 12 8b 2-Pd 13b 35 870
13 14 8a 2-Pd 16 86 910
149 15 8a 2-Pd 16 500 94(9

a All reactions were carried out at £4C for 12 h in 0.9 M aqueous
Li,CO; under N unless otherwise noted. The ratio of cyclic substrate
(mol)/nucleophile (mol)/catalyst (Pd equiv}® (L) = 1.0/3.0/0.3/5.0.
bIsolated yield.° For9ab: determined by NMR shift experiment with
use of Eu(hfey. For10—13: determined by GC analysis with use of a
chiral stationary phase capillary column (Cyclodex CB).E6gb:
determined by HPLC analysis with use of a chiral stationary phase
column (Dicel OD-H; hexane/i-PrOH= 98/2).9See Supporting
Information. Carried out at 25C. f Carried out in dichloromethane.
95 mol % Pd of2-Pd complex was used.35% of 15 was recovered.

the same results (67% vyield, 92% e8&))( (entry 2). The
six-membered substraéealso underwent asymmetric alkylation
with 8aand8b to afford the corresponding alkylated addubis
and10b with enantioselectivity of 89% ee (entries 3 and 4). The
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counterpart in organic solveft.Other PS-PEG supported cata-
lysts, 3-Pd and4-Pd, were examined for the allylic substitution
of 12 with 8b. The catalyst8-Pdand4-Pd, which lack the fused
aromatic moiety on their pyrroloimidazolone ring system, gave
13bwith much lower selectivity (23% ee in 55% yield, and 32%
ee in 44% vyield, respectively) (entries 10 and 11).

It is noteworthy that the immobilized complePd is less
catalytically active in an organic solvent. Thus, the alkylation of
12 with 8b in dichloromethane in the presence N{O-bis-
(trimethylsilyl)acetamide (BSA) and lithium acetate gave 35%
yield of the adductl3b with 87% ee, whereas the reaction
proceeded smoothly in aqueous lithium carbonate (entries 9 and
12). In the aqueous media, the organic substrates (£gnd8)
must diffuse into the hydrophobic PS matrix to form the highly
concentrated reaction sphere that should react with ionic species
(e.g., aqueous alkaline) through the interfacial PEG rég§ion
exhibiting higher reactivity than those in an organic solvent.

The PS-PEG supported catalyatPd was effective for the
asymmetric allylic alkylation of both cyclic and acyclic substrates
in water!?2eThe reactions of 1,3-diphenylpropenyl acetétd) (
and pivalate 15) were catalyzed bg2-Pd under the same reaction
conditions to givel6 of 91% ee and 94% ee, respectivély.

The recycle experiments were examined for the asymmetric
substitution of6 with 8b catalyzed by2-Pd. After the first run
giving 91% ee of the addudiOb (Table 1, entry 5), the reaction
mixture was filtered and the catalyst-resin was rinsed twice with
THF.Y" The recovered resin-supported cataBstd was succes-
sively subjected to a second and a third series of the reactions to
give 10b of 90% ee in 70% yield (second run) and of 90% ee in
65% vyield (third run).

In summary, we have developed an immobilized palladium
complex of aP,N-chelate chiral ligand on an amphiphilic PS-
PEG resin, which catalyzed the asymmetriallylic substitution
of both cyclic and acyclic substrates in water with enantioselec-
tivity of up to 98% ee. The catalyst was recovered by simple
filtration and was reused without any loss of activity and
stereoselectivity. To the best of our knowledge, this is the first
successful work on immobilized recyclable asymmetric catalysis
in water.
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